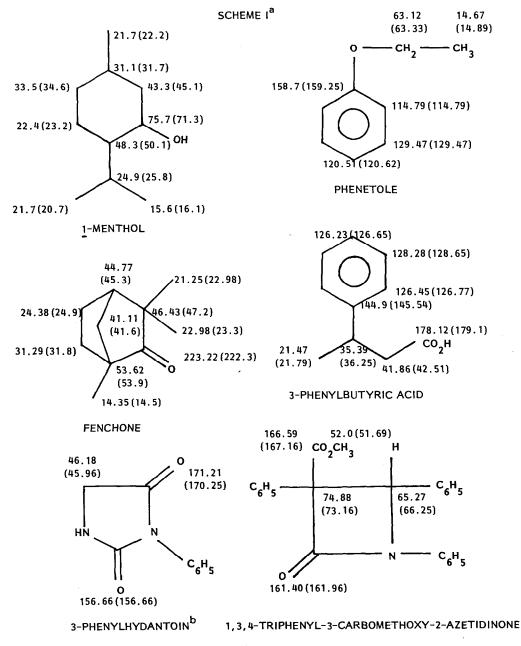
NMR SPECTRAL STUDIES X - ARSENIC TRICHLORIDE AS A CONVENIENT SOLVENT FOR C-13 NMR SPECTROSCOPY^{1, 2}

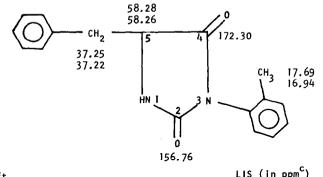
Ajay K. Bose, M. Sugiura and P. R. Srinivasan Department of Chemistry and Chemical Engineering Stevens Institute of Technology Hoboken, New Jersey 07030, USA


(Received in USA 15 November 1974; received in UK for publication 3 March 1975)

For compounds of low solubility in CDCl_3 , other nmr solvents such as DMSO-d_6 , acetone-d₆, CD_3OD , CD_3CN , $\text{CD}_3\text{CO}_2\text{D}$, etc., are commonly used. These solvents do not usually interfere with pmr spectroscopy except for removal of exchangeable protons; however, they give rise to intense multiplets in C-13 nmr spectra and often submerge some of the cmr signals of the compounds under study. A few years ago Szymanski and coworkers³⁻⁵ and Brame and coworkers⁶ reported the successful use of AsCl₃ and SbCl₃ as solvents for pmr spectroscopy of organic compounds and polymers which are sparingly soluble in CDCl_3 or CCl_4 . These and other reports⁷ suggested the possibility that AsCl₃ (and SbCl₃) might be useful for obtaining cmr spectra of various compounds with poor solubility in CDCl_3 or CCl_4 . We present here the results of our preliminary investigation on the suitability of AsCl₂ as a solvent for cmr spectroscopy.

We have examined the cmr spectra of several classes of organic compounds such as hydrocarbons, alcohols, ethers, ketones, acids, esters, amides, hydantoins and β -lactams in a 2:1 (v/v) mixture of AsCl₃ and CDCl₃⁸ and compared the chemical shifts with those for the same compounds in CDCl₃ or DMSO-d₆. Scheme I shows the chemical shifts of the various carbon atoms for a few of these compounds. It is seen that in almost all cases with the exception of alcohols the chemical shift differences (≤1 ppm) are negligible on the cmr scale.

Alcohols show a downfield shift of about 2-4 ppm for the hydroxyl bearing carbon and upfield shift of about 2 ppm for the immediately adjacent carbons. However, the alcohols employed by us were recovered unchanged upon addition of water to the solution and extracting with a suitable organic solvent. Several amino compounds reacted vigorously with AsCl₃ forming solid products and hence these were not studied further.


From these observations it may be concluded that $AsCl_3$ or $AsCl_3 + CDCl_3$ is a superior solvent for recording cmr spectra of sparingly soluble compounds without hydroxy and amino groups. Apparently $AsCl_3$ behaves as a shift reagent for carbon carrying a hydroxy group and adjacent carbons. Comparison of spectra run under identical conditions in $CDCl_3$ and $AsCl_3 - CDCl_3$ shows that there is no appreciable difference in peak intensities or line widths between the two sets of spectra.

- The numbers correspond to C-13 chemical shifts (in ppm downfield from TMS) for the compound а. in AsCl₃-CDCl₃ solution; numbers in parentheses are for CDCl₃ solution. The numbers in parentheses are for the compound in DMSO-d₆ solution.
- b.

Table I

Lanthanide Induced Shift (LIS) Studies^a on 3-*o*-Tolyl-5-benzylhydantoin^b

Shift Reagent	Solvent	LIS (in ppm [~])		
		°2	¢4	с ₅
Eu(fod) ₃	CDC43	+2.16 +1.73	0.00	+0.76 +0.65
Eu(fod) ₃	Ascl ₃ - CDCl ₃	-2.15	-0.35 -1.08	-0.10 -0.11
Pr(fod) ₃	CDCl ₃	-4.53 -5.28	-1.83 -1.19	-2.15 -1.83
Pr(fod) ₃	$Ascl_3 - CDCl_3$	+1.84 +1.41	-0.11	+0.11 +0.10

a. In all cases, 300 mg of compound and 85 mg of the lanthanide were employed.

b. Chemical shifts in ppm for CDCl₃ solution with TMS as internal reference; two resonances are shown by most of the carbon atoms becasue the tolyl group exists in two different orientations, H. Fujiwara, Ph.D. Thesis, Stevens Institute of Technology, 1974.

c. + denotes shift to lower magnetic field.

Lanthanide shift reagents are very widely used now for nmr spectral studies. Therefore, we examined the compatibility of the $AsCl_3 - CDCl_3$ system with these shift reagents. 3-o-Tolyl-5-ben-zylhydantoin was chosen for this study and the shifts induced on its carbon atoms by both Eu (fod)₃ and Pr (fod)₃ in the above solvent mixture as well as in CDCl₃ solution were measured (see Table 1). Interestingly, the direction of shifts in AsCl₃ were the opposite of those observed in CDCl₃ and the magnitudes of the shifts also varied. The reasons for this behaviour are not yet clear but once a pattern of shifts for different kinds of carbon atoms in this solvent mixture is recognized, useful information could be derived for compounds of unknown structural features. Some line-broadening and drop in peak intensities are noticed upon addition of the lanthanide shift reagents to AsCl₃ - CDCl₃ solutions; similar effects are noticed in CDCl₃ solutions also.

It may be noted that lanthanide shift reagents cannot be used in DMSO-d₆, acetone-d₆, CD₃CN, CD₃OD, or CD₃CO₂D. The AsCl₃ or AsCl₃ - CDCl₃ system therefore has a major advantage over these solvents. Since AsCl₃ is cheap (cheaper than even CDCl₃) and readily available, it may be used in a routine fashion for ¹³C nmr spectroscopy. Caution must be exercised in working with AsCl₃ and in disposing off of the solution because of the toxic nature of arsenic compounds. During recovery of sample, which is best effected by adding a desirable organic solvent and water to the AsCl₃ - CDCl₃ solution, the organic layer is washed once or twice with cold 5% aqueous NaOH solution. If recovery is not desired, the solution is dispensed into a large bottle containing 10% aqueous NaOH solution.

Acknowledgment

We wish to thank Stevens Institute of Technology for the support of this research and Mr. Ashby Johnson of A.H. Robins Company for valuable discussions.

REFERENCES

- Presented in part at the 168th National Meeting of the American Chemical Society, Atlantic City, N.J., Sept. 8-12, 1974.
- 2. For Part IX, see A. K. Bose and P. R. Srinivasan, J. Magn. Resonance, 15, 592 (1974).
- 3. H. A. Szymanski and A. Bhremle, J. Polymer Sci., 3, 63 (1965).
- 4. H. A. Szymanski, A. Bhremle, and W. Collins, Appl. Spectry., 19, 137 (1965).
- 5. H. A. Szymanski, J. J. Antkowiak, and L. A. Bauman, Jr., ANAL. CHEM., 40, 243 (1968).
- 6. E. G. Brame, Jr., R. G. Ferguson, and G. J. Thomas, Jr., ANAL. CHEM., 39, 517 (1967).
- 7. H. Feuner, and G. Mixich, Arzneimittelforschung, 23, 667 (1973).
- 8. CDCL₃ was used to provide the source of ²H for the deuterium lock of the Bruker HX-90 NMR Spectrometer; this also made the solutions less viscous. (However, if necessary, spectra could be taken in neat AsCl₃ with a central 5 mm capillary containing D₂O for the ²H lock). TMS was used as internal reference and C-13 spectra were recorded by PFT on the above instrument using an internal ²H lock (13.815 MHz) with an operating frequency of 22.628 MHz for ¹³C and employing broad-band proton (90 MHz) decoupling. A mixture of AsCl₃: CDCl₃ (2:1, v/v) could be stored for several weeks in a tightly stoppered bottle. Care was exercised in handling this solution to avoid contact with skin. AsCl₃ (Anhydrous, 99%) purchased from Research Organic/Inorganic Chemical Corp., Sun Valley, Calif., was used directly for these experiments. This reagent is also available from Ventron Corporation and PCR Incorporated.